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This is hence the advantage of our method: that immediately · · · and with the

only guidance of characters and through a safe and really analytic method, we

bring to light truths that others had barely achieved by an immense mind effort

and by chance. And therefore we are able to present within our century results

which, otherwise, the course of many thousands of years would hardly deliver.

(G. W. Leibniz, 1679)

Abstract. New successes in dealing with set theories by means of state-
of-the-art theorem-provers may ensue from terse and concise axiomatiza-
tions, such as can be moulded in the framework of the (fully equational)
Tarski-Givant map calculus. In this paper we carry out this task in detail,
setting the ground for a number of experiments.

Key words: Set Theory, relation algebras, first-order theorem-proving, alge-
braic logic.

1 Introduction

Like other mature fields of mathematics, Set Theory deserves sustained efforts
that bring to light richer and richer decidable fragments of it [6], general inference
rules for reasoning in it [35, 2], effective proof strategies based on its domain-
knowledge [3], and so forth.

Advances in this specialized area of automated reasoning tend to be steady
but slow compared to the overall progress in the field. Many experiments with
set theories have hence been carried out with standard theorem-proving systems.
Still today such experiments pose considerable stress on state-of-the-art theorem
provers, or demand the user to give much guidance to proof assistants; they
therefore constitute ideal benchmarks. Moreover, in view of the pervasiveness of
Set Theory, they are likely —when successful in something tough— to have a
strong echo amidst computer scientists and mathematicians. Even for those who
are striving to develop something entirely ad hoc in the challenging arena of set
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theories, it is important to assess what can today be achieved by unspecialized
proof methods and where the context-specific bottlenecks of Set Theory precisely
reside.

In its most popular first-order version, namely the Zermelo-Skolem-Fraenkel
axiomatic system ZF, set theory (very much like Peano arithmetic) presents
an immediate obstacle: it does not admit a finite axiomatization. This is why
the von Neumann-Bernays-Gödel theory GB of sets and classes is sometimes
preferred to it as a basis for experimentation [4, 34, 27]. Various authors (e.g.,
[19, 23, 24]) have been able to retain the traits of ZF, by resorting to higher-order
features of specific theorem-provers such as Isabelle.

In this paper we will pursue a minimalist approach, proposing a purely equa-
tional formulation of both ZF and finite set theory. Our approach heavily relies
on [33], but we go into much finer detail with the axioms, resulting in such a
concise formulation as to offer a good starting point for experimentation (with
Otter [18], say, or with a more markedly equational theorem-prover). Our formu-
lation of the axioms is based on the formalism L× of [33] (originating from [32]),
which is equational and devoid of variables, but somewhat out of standards.
Luckily, a theory stated in L× can easily be emulated through a first-order
system, simply by treating the meta-variables that occur in the schematic for-
mulation of its axioms (both the logical axioms and the ones endowed with a
genuinely set-theoretic content) as if they were first-order variables. In practice,
this means treating ZF as if it were an extension of the theory of relation al-
gebras [17, 29, 21, 8, 10]; an intuitive explanation —a rough one, in view of
well-known limitative results—1 of why we can achieve a finite axiomatization
is that variables are not supposed to range over sets but over the dyadic (i.e.
binary) relations on the universe of sets.

Taken in its entirety, Set Theory offers a panorama of alternatives (cf. [28],
p.x); that is, it consists of axiomatic systems not equivalent (and sometimes
antithetic, cf. [20]) to one another. This is why we will not produce the axioms
of just one theory and will also touch the theme of ‘individuals’ (ultimate entities
entering in the formation of sets). Future work will expand the material of this
paper into a toolkit for assembling set theories of all kinds—after we have singled
out, through experiments, formulations of the axioms that work decidedly better
than others.

2 Syntax and semantics of L×

L× is a ground equational language where one can state properties of dyadic
relations —maps, as we will call them— over an unspecified, yet fixed, domain
U of discourse. In this paper, the map whose properties we intend to specify is
the membership relation ∈ over the class U of all sets. The language L× consists
of map equalities Q=R, where Q and R are map expressions:
1 Two crucial limitative results are: that no consistent extension of the Zermelo theory

is finitely axiomatizable (Montague, 1961), and that the variety of representable
relation algebras is not finitely based (Monk, 1964).
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Definition 1. Map expressions are all terms of the following signature:
symbol : Ø 1l ι ∈ ∩ 4 ◦ −1 \ ∪ †
degree : 0 0 0 0 2 2 2 1 1 2 2 2
priority : 5 3 6 7 2 2 4

(Of these, ∩,4,◦,\,∪, † will be used as left-associative infix operators, −1 as a
postfix operator, and as a line topping its argument.) 2

For an interpretation of L×, one must fix, along with a nonempty U , a subset
∈= of U2 =DefU ×U . Then each map expression P comes to designate a specific
map P= (and, accordingly, any equality Q=R between map expressions turns
out to be either true or false), on the basis of the following evaluation rules:

Ø= =Def ∅, 1l= =Def U2, ι= =Def {[a, a] : a in U};
(Q∩R)= =Def { [a, b] ∈ Q= : [a, b] ∈ R= };

(Q4R)= =Def { [a, b] ∈ U2 : [a, b] ∈ Q= if and only if [a, b] /∈ R= };
(Q◦R)= =Def { [a, b] ∈ U2 : there are cs in U for which [a, c] ∈ Q= and [c, b] ∈ R= };

(Q−1)= =Def { [b, a] : [a, b] ∈ Q= } .

Of the operators and constants in the signature of L×, only a few deserve
being regarded as primitive constructs; indeed, we choose to regard as derived
constructs the ones for which we gave no evaluation rule, as well as others that
we will tacitly add to the signature:

P ≡Def P41l
P\Q ≡Def P∩Q

P∪Q ≡Def P\Q

P†Q ≡Def P◦Q
funPart( P ) ≡Def P\P◦ι

etc.
The interpretation of L× obviously extends to the new constructs; e.g.,

(P†Q)= =Def { [a, b] ∈ U2 : for all c in U , either [a, c] ∈ P= or [c, b] ∈ Q= },
funPart( P )= =Def {[a, b] ∈ P= : [a, c] /∈ P= for any c 6= b},

so that funPart( P )=P will mean “P is a partial function”, very much like
Fun(P ) to be seen below.

Through abbreviating definitions, we can also define shortening notation for
map equalities that follow certain patterns, e.g.,

Fun(P ) ≡Def P−1◦P\ι=Ø
Total(P ) ≡Def P◦1l=1l

so that Total(P ) states that for all a in U there is at least one pair [a, b] in P=.

Remark 1. It is at times useful (cf. [5]) to represent a map expression P by a
labeled oriented graph G with two designated nodes s0, s1 named source and
sink, whose edges are labeled by sub-expressions of P .

A non-deterministic algorithm to construct G, s0, s1 runs as follows: either

– G consists of a single edge, labeled P , leading from s0 to s1; or
– P is of the form Q−1, and G, s1, s0 (with source and sink interchanged)

represents Q; or
– P is of the form Q◦R, the disjoint graphs G′, s0, s

′
2 and G′′, s′′2 , s1 represent

Q and R respectively, and one obtains G by combination of G′ with G′′ by
‘gluing’ s′′2 onto s′2 to form a single node; or
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– P is of the form Q∩R, the disjoint graphs G′, s′0, s
′
1 and G′′, s′′0 , s′′1 represent

Q and R respectively, and one obtains G from G′ and G′′ by gluing s′′0 onto
s′0 to form s0 and by gluing s′′1 onto s′1 to form s1.

As an additional related convention, one can either

– label both s0 and s1 by ∀, to convert a representation G, s0, s1 of P into a
representation of the equality P=1l; or

– label both s0 and s1 by ∃, to represent the inequality P 6=Ø (which is a short
for the equality 1l◦P◦1l=1l); or

– label the source by ∀ and the sink by ∃, to represent the statement Total(P ).
2

3 Specifying set theories in L×

One often strives to specify the class C of interpretations that are of interest in
some application through a collection of equalities that must be true in every =
of C. The task we are undertaking here is of this nature; our aim is to capture
through simple map equalities the interpretations of ∈ that comply with

– standard Zermelo-Fraenkel theory, on the one hand;
– a theory of finite sets ultimately based on individuals, on the other hand.

In part, the game consists in expressing in L× common set-theoretic notions.
To start with something obvious,

6∈ ≡Def ∈, 3 ≡Def ∈−1, 63 ≡Def 3;
ε0ε1 · · · εn ≡Def ε0 ◦ ε1 ◦ · · · ◦ εn, where each εi stands for one of ∈, 6∈,3, 63, 1l, ι.
To see something slightly more sophisticated:

Example 1. With respect to an interpretation =, one says that a intersects b if a
and b have some element in common, i.e., there is a c for which c∈=a and c∈=b.
A map expression P such that P= = { [a, b] ∈ U2 : a intersects b } is 3∈.

Likewise, one can define in L× the relation a includes b (i.e., ‘no element
of b fails to belong to a’), by the map expression 63∈. The expression 36∈∪ι
translates the relation a is strictly included in b, and so on.

Let a splits b mean that every element of a intersects b and that no two
elements of a intersect each other. These conditions translate into the map ex-
pression defined as follows:

splits ≡Def ( 63†3∈ )∩(3∩3◦( 3∈∩ι ) )◦1l.
2

Secondly, the reconstruction of set theory within L× consists in restating
ordinary axioms (and, subsequently, theorems), through map equalities.
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Example 2. One of the many ways of stating the much-debated axiom of choice
(under adequately strong remaining axioms) is by claiming that when a splits
some b, there is a c which is also split by a and which does not strictly include
any other set split by a. Formally:

(Ch) Total( splits◦1l∪splits \ splits◦36∈∪ι ),
where the second and third occurrence of splits could be replaced by 63†3∈.

The original version of this axiom in [36] stated that if a is a set whose
elements all are sets endowed with elements and mutually disjoint, then

⋃
a

includes at least one subset having one and only one element in common with
each element of a. To relate this version of (Ch) with ours,2 notice that a set
a splits some b if and only if a consists of pairwise disjoint non-void sets (and,
accordingly, a splits

⋃
a). Moreover, an inclusion-minimal c split by a must have

a singleton intersection with each d in a (otherwise, of two elements in c ∩ d,
either one could be removed from c); conversely, if c is included in

⋃
a and

has a singleton intersection with each d in a, then none of its elements e can
be removed (otherwise c \ {e} would no longer intersect the d in a to which e
belongs). 2

In the third place, we are to prove theorems about sets by equational rea-
soning, moving from the equational specification of the set axioms. To discuss
this point we must refer to an inferential apparatus for L×; we hence delay this
discussion to much later (cf. Sec.8).

4 Extensionality, subset, sum-set, and power-set axioms

Two derived constructs, ∂ and F, will be of great help in stating the properties
of membership simply:

∂( P ) ≡Def P◦6∈, F( P ) ≡Def ∂( P )\P◦∈.
Plainly, a∂(Q )=b and aF( R )=b will hold in an interpretation = if and only if,
respectively,

– all cs in U for which aQ=c holds are ‘elements’ of b (in the sense that c∈=b);
– the elements of b are precisely those c in U for which aR=c holds.

Our first axiom, extensionality, states that sets are the same whose ele-
ments are the same:

(E) F( 3 )=ι.
A useful variant of this axiom is the scheme Fun(F(P ) ), where P ranges

over all map expressions.

Two rather elementary postulates, the power-set axiom and the sum-set
axiom, state that for any set a, there is a set comprising as elements all sets
included in a, and there is one which comprises all elements of elements of a:

(Pow) Total( ∂( 63∈ ) ),
2 For 19 alternative versions of this axiom, cf. [25], p.309.
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(Un) Total( ∂(33 ) ).
A customary strenghtening of the sum-set axiom is the transitive embed-

ding axiom, stating that every b belongs to a set a which is transitively closed
w.r.t. membership, in the sense specified by trans here below:

(T) Total(∈◦trans ), where trans ≡Def ι∩∂( 33 ).
Here, by requiring trans= to be contained in ι=, we have made it represent
a collection of sets; then, the further requirement that trans= be contained in
∂( 33 )= amounts to the condition that c∈=a holds when a, d, and c are such
that a trans= a, a3=d, and d3=c hold.

The subset axioms enable one to extract from any given a the set b consisting
of those elements of a that meet a condition specified by means of a predicate
expression P . In this form, still overly näıve, this ‘separation’ principle could
be stated as simply as: Total(F(3∩P ) ). This would suffice (taking Ø as P ) to
ensure the existence of a null set, devoid of elements. We need the following more
general form of separation (whence the previous one is obtained by taking ι as
Q):

(S) Total(F( funPart( Q )◦3∩P ) ).
The latter states that to every set a, there corresponds a set b which is null un-
less there is exactly one d fulfilling aQ=d, and which in the latter case consists
of all elements c of d for which aP=c holds.

Example 3. Plainly, funPart( 3 )= is the map holding between c and d in U iff
c = {d}, i.e. d is the sole element of c; moreover funPart( 3◦funPart( 3 ) )= is the
map holding between a and d iff there is exactly one singleton c in a and d is
the element of that particular c. Thus, the instance

Total(F( funPart( 3◦funPart( 3 ) )◦3∩63 ) )
of (S) states that to every set a there corresponds a set b which is null unless
there is exactly one singleton c = {d} in a, and which in the latter case consists
of all elements of d that do not belong to a. 2

5 Pairing and finiteness axioms

A list π0, π1, . . . , πn of maps are said to be conjugated quasi-projections
if they are (partial) functions and they are, collectively, surjective, in the sense
that for any list a0, . . . , an of entities in U there is a b in U such that πi(b) = ai

for i = 0, 1, . . . , n. We assume in what follows that π0,π1 are map expressions
designating two conjugated quasi-projections. It is immaterial whether they are
added as primitive constants to L×, or they are map expressions suitably chosen
so as to reflect one of the various notions of ordered pair available around, and
subject to axioms that are adequate to ensure that the desired conditions, namely

(Pair) π−1
0 ◦π1=1l, Fun(π0 ), Fun(π1 ), ∈3=1l,

hold (cf. [33], pp.127–135). Notice that the clause (Pair)4 of this pairing axiom
will become superfluous when the replacement axiom scheme will enter into play
(cf. [16], pp.9–10).
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Example 4. A use of the πbs is that they enable one to represent set-theoretic
functions by means of entities f of U such that no two elements b, c of f for
which π=0 yields a value have π=0 (b) = π=0 (c). Symbolically, we can define the
class of these single-valued sets as

sval ≡Def ι ∩ σ◦∈, where σ ≡Def 3◦(π0◦π−1
0 ∩ι ).

Cantor’s classical theorem that the power-set of a set has more elements than
the set itself can be phrased (cf. [2], p.410) as follows: for every set a and for
every function f , there is a subset b of a which is not ‘hit’ by the function f
(restricted to the set a in question).3 A rendering of this theorem in L× could be
Total( 63∈∩3◦funPart( P ) ), but this would not faithfully reflect the idea that
the theorem concerns set-theoretic functions rather than functions, funPart( P ),
of L×. The distinction is subtle but important, because the subsets F of U2 that
candidate as values for map expressions are not necessarily entities of the same
kind as the ‘sets’ f belonging to U ; on the one hand, F qualifies as a function
when no two pairs [a, b], [a, d] in F share the same first component and differ
in their second components; on the other hand, f qualifies as a ‘function’ when
f sval= f holds—the convenience to require also that π=0 (d) and π=1 (d) both exist
for each d∈=f seems to be a debatable matter of taste.

The typical use of π0 and π1 is illustrated by a translation of Cantor’s
theorem more faithful than the above, which exploits the possibility to encode
the pair a, f by an entity c with π=0 (c) = a and π=1 (c) = f :

Total(π0◦63∈∩(π0◦3◦π−1
0 ∩π1◦( σ∩3 ) )◦π1 ) (σ as before).

The latter states that to every c there corresponds a b such that

– if it exists, π=0 (c) includes b;
– if π=0 (c) = a and π=1 (c) = f both exist, then b 6= π=1 (d) for any d in f such

that π=0 (d) = e exists and belongs to a and no d′ in f other than d fulfills
π=0 (d′) = e. 2

A standard technique used to derive statements of the form Total(F( R ) ),
which are often very useful, is by breaking F( R ) into an equivalent expression of
the form ( P◦π−1

0 ∩π−1
1 )◦F(π0◦3∩π1◦Q ), where Total(P ) is easier to prove.

Exploiting the graph representation of map expressions introduced in Remark 1,
this situation can be depicted as follows:

m∀ � π1 v -F( π0◦3∩π1◦Q ) n∃
v

�
�

�
�

�3
P

Q
Q

Q
Q

QQk
π0

︸ ︷︷ ︸
F( R )

3 This was one of the first major theorems whose proof was automatically found by a
theorem prover, cf. [1]. This achievement originally took place in the framework of
typed lambda-calculus.
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The desired totality of F( R ) will then follow, in view of (Pair)1 and of (S),
(Pair)2. For example, by means of the instantiation P ≡ ∈◦trans, Q ≡ ι of
this proof scheme, we obtain Total(F( ι ) ), where F( ι ) designates the singleton-
formation operation a 7→ {a} on U ; then, by taking

P ≡ ( ( π0∪π0◦1l )◦∈∩( π1∪π1◦1l )◦F( ι )◦∈ )◦∂(33 )
and

Q ≡ π0◦3∪π1,
we obtain the totality of F( π0◦3∪π1 ), which designates the adjunction op-
eration [a, b] 7→ a ∪ {b}. Similarly, one gets the totality of F( 63∈ ), F( 33 ),
F( π0∪π1 ), of any F(R ) such that both R\Q=Ø and Total( ∂(Q ) ) are known
for some Q, etc. Even the full (S) could be derived with this approach from its
restrained version Total(F(π0◦3∩π1◦P ) ).

Under the set axioms (E), (Pow), (S), (Pair) introduced so far, it is rea-
sonable to characterize a set a as being finite if and only if every set b of which
a is an element has an element which is minimal w.r.t. inclusion (cf. [31], p.49).
Intuitively speaking, in fact, the set formed by all infinite cs in the power-set
℘( a ) of a has no minimal elements when a is infinite, because every such c re-
mains infinite after a single-element removal. Conversely, if a belongs to some b
which has no minimal elements, then the intersection of b with ℘( a ) has no min-
imal elements either, and hence a is infinite. In conclusion, to instruct a theory
concerned exclusively with finite sets, one can adopt the following finiteness
axiom:

(F) finite=ι, where finite ≡Def ι∩( 1l◦(∈∩( ( ι∪63∈ )†6∈ ) )†63 ).
Here, by requiring finite= to be contained in ι=, we have made it represent a
collection of sets (the collection of all sets, if (F) is postulated); then, the fur-

ther requirement that finite= be contained in ( 1l◦(∈∩( ( ι∪63∈ )†6∈ ) )†63 )
=

amounts to the condition that when both a finite= a and b3=a hold, there is a
c∈=b such that no d∈=b other than c itself is included in c.

6 Bringing individuals into set theory: Foundation and
plenitude axioms

Taken together with the foundation axiom to be seen below, the axioms (E),
(Pow), (T), (S), (Pair), and (F) discussed above constitute a full-blown theory
of finite sets. However, they do not say anything about individuals (or ‘urele-
ments’, or atoms, cf. [14] p.198), entities that common sense places at the bottom
of the formation of sets. These are not essential for theoretical development, but
useful to model practical situations. To avoid a revision of (E) —necessary, if
we wanted to treat individuals as entities devoid of elements but different from
the null set— let us agree that individuals are self-singletons a = {a} (cf. [28],
pp.30–32). Moreover, to bring plenty of individuals into U (at least as many
individuals as there are sets, hence infinitely many individuals), we require that
there are individuals outside the sum-set of any set . Here comes the plenitude
axiom:
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(Ur) Total(33◦ur ), where ur ≡Def ι∩F( ι ).
To develop a theory of pure sets, one will postulate ‘lack’ of individuals, by

adopting the axiom ur=Ø instead of plenitude.

When individuals are lacking, the foundation (or ‘regularity’) axiom en-
sures that the membership relation ∈= is cycle-free—more generally, under in-
finity and replacement axioms (see Sec.7 below), it can be used to prove that ∈=

is well-founded on U (cf. [7], Ch.2 Sec.5). Regularity is usually stated as follows:
when some b belongs to a, there is a c also belonging to a that does not intersect
a. On the surface, this statement has the same structure as the version of the
axiom of choice seen at the end of Sec.2; in L× it can hence be rendered by

Total(31l∪3\3∈ ).

Example 5. To ascertain that the existence of a membership cycle would conflict
with regularity stated in the form just seen, one can use singleton-formation
together with the adjunction operation and with the quasi-projections π0,π1,
to form the set a = {b0, . . . , bn} out of any given list b0, . . . , bn of sets. If, by
absurd hypothesis, b0∈=b1∈= · · ·∈=bn∈=b0 could hold, then every element bj of
a would intersect a, since bn∈=a∩b0 and bi−1∈=a∩bi would hold for i = 1, . . . , n.

2

To reconcile the above statement of regularity with individuals, we can recast
it as

(R) Total( ( 63∪1l◦ur )†Ø∪3\3◦( ι\ur )◦∈\1l◦ur ),
which means: unless every b in a is an individual, there is a c in a such that
every element of a ∩ c is an individual and c itself is not an individual .

As is well-known (cf. [16], p.35), foundation helps one in making the defini-
tions of basic mathematical notions very simple. In our framework, we propose
to adopt the following definition of the class of natural numbers:4

nat ≡Def ι ∩ (3◦(F( 3∪ι ) \ ι )†( ι ∪∈ ) ∩31l ),
which means: a is a natural number if for every b in a∪ {a} other than the null
set, there is a c in a such that b = c ∪ {c} and b 6= c.

7 An infinity axiom, and the replacement axioms

Similarly, under the foundation axiom, the definition of ordinal numbers becomes
ord ≡Def ( trans\3◦ur◦1l )∩( 63†( ∈∪ι∪3 )†6∈ ),

where trans is the same as in (T), hence trans\ι=Ø holds, and hence (thanks to
(R)) 63†( ∈∪ι∪3 )†6∈ requires that an ordinal be totally ordered by membership.

The existence of infinite sets is often postulated by claiming that ord\nat is
not empty: 1l◦( ord\nat )◦1l=1l, or equivalently Total( 1l◦( ord\nat ) ). The fol-

4 From this simple start one can rapidly reach the definition of important data struc-
tures, e.g., ordered and oriented finite trees.
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lowing more essential formulation of the infinity axiom, based on [22] and
presupposing (R), seems preferable to us:5

(I) Total( 1l◦( ∂( 33 )∩∂( 33 )−1\∈\3\ι\3◦∈43◦∈ ) ).
What (I) means is: There are distinct sets a0, a1 such that the sum-set of either
one is included in the other, neither one belongs to the other, and for any pair
c0, c1 with c0 in a0 and c1 in a1, either c0 belongs to c1 or c1 belongs to c0.6 7

Of course this axiom is antithetic to the axiom (F) seen earlier: one can adopt
either one, but only one of the two.

In a theory with infinite sets, the replacement axiom scheme plays a
fundamental rôle. Two simple-minded versions of it are:

Total( ∂(3◦funPart( Q ) ) ), Total( ∂(3◦F( Q )◦3 ) ).
Both of these state —under different conditions on a certain map P— that
to every c there corresponds a (superset of a) set of the form P [c] =Def {u :
vP=u for some v∈=c}. The former applies when P (≡ funPart( Q )) designates
a function, the latter when F( P ) (with P ≡ F( Q )◦3) designates a total map.
A formulation of replacement closer in spirit to the latter is adopted in [30], but
it is the former that we generalize in what follows.

Parameter-less replacement, like a parameter-less subset axiom scheme, would
be of little use. Given an entity d of U , we can think that π=0 (d) represents the
domain c to which one wants to restrict a function, and π=1 (d) represents a list
of parameters. To state replacement simply, it is convenient to add to the con-
ditions on the πis a new one. Specifically, we impose that distinct entities never
encode the same pair:8

(Pair)5 π0◦π−1
0 ∩π1◦π−1

1 \ι=Ø.
The simplest formulation of replacement we could find in L×, so far, is:

(Repl) Total( ∂( ( π0◦3◦π−1
0 ∩π1◦π−1

1 )◦funPart( Q ) ) ) .
This means: To every pair d there corresponds a set comprising the images, under
the functional part of Q, of all pairs e that fulfill the conditions π=0 (e)∈=π=0 (d),
π=1 (e) = π=1 (d).

Example 6. To see that (Pair)4 can be derived from (Pair)1,2,3, (T), (S),
and (Repl), one can argue as follows. Thanks to (S), a null set { } exists:
1l∈◦1l=1l. Then, by virtue of (T), a set to which this null set belongs exists
5 Here, like in the case of (Ur) (which could have been stated more simply as

Total( 63◦ur )), our preference goes to a formulation whose import is as little de-
pendent as possible from the remaining axioms.

6 Notice that when c belongs to a` (` = 0, 1), then c ( a1−`; hence there is a c′ in
a1−` \ c, so that c belongs to c′. Then c′ ( a`, and so on. Starting w.l.o.g. with c0 in
a0, one finds distinct sets c0, c1, c2, . . . with c`+2·i in a` for ` = 0, 1 and i = 0, 1, 2, . . . .

7 For the sake of completeness, let us mention here that for a statement not relying on
(R), the following cumbersome expression should be subtracted from the argument
of Total in (I):

( 3◦π−1
0 ∩3◦π−1

1 )◦( π0◦∈◦π−1
0 ∩π1◦∈◦π−1

1 ∩π1◦3◦π−1
0 ∩π0◦∈◦π−1

1 )◦( π0◦∈∩π1◦∈ ).
8 Notice that (Pair)2,3,4,5 can be superseded (retaining (Pair)1) by the definitions

π0 ≡Def funPart( 3◦funPart( 3 ) ), π1 ≡Def 33∩( ( 33∪π0 )†ι )∩( 63†31l ).
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too: 1l∈◦∈◦1l=1l. Again through (T), we obtain a set c to which both of the
preceding sets belong: 1l∈◦( ∈∩∈∈ )◦1l=1l. The latter c can be combined with
any given a to form a pair d fulfilling both π=0 (d) = c and π=1 (d) = a, by (Pair)1.
Two uses of (Repl), referring to the single-valued maps

Q` ≡Def π0◦31l ∩ π` 4 π0◦31l ∩ π1−`

with ` = 0 and ` = 1 respectively, will complete the job. Indeed, the first use of
(Repl) will form from d a set ca comprising a and { } as elements; the second
use of (Repl) will form from a pair da, with components ca and b, a set cab

comprising a and b as elements, for any given b.
Notice that either use of (Repl) in the above argument has exploited a single

parameter, which was a and b respectively. 2

8 Setting up experiments on a theorem-prover

A map calculus, i.e, an inferential apparatus for L× is defined in [33], pp.45–
47, along the following lines:

– A certain number of equality schemes are chosen as logical axioms. Each
scheme comprises infinitely many map equalities P=Q such that P= = Q=

holds in every interpretation =; syntactically it differs from an ordinary map
equality in that meta-variables, which stand for arbitrary map expressions,
may occur in it.

– Inference rules are singled out for deriving new map equalities V =W from
two equalities P=Q, R=S (either assumed or derived earlier). Of course
V = = W= must hold in any interpretation = fulfilling both P= = Q= and
R= = S=. The smallest collection Θ×(E) of map equalities that comprises
a given collection E (of proper axioms) together with all instances of the
logical axioms, and which is closed w.r.t. application of the inference rules,
is regarded as the theory generated by E.

A variant of this formalism, which differs in the choice of the logical axioms
(because ∩ and 4 seem preferable to ∪ and as primitive constructs), is shown
in Figure 1 (see also [9]).

We omit the details here, although we think that the choice of the logical
axioms can critically affect the performance of automatic deduction within our
theories. Ideally, only minor changes in the formulation E of the set axioms
should be necessary if the logical axioms are properly chosen and then they are
bootstrapped with inventories of useful lemmas concerning primitive as well as
secondary map constructs. Similarly, in the automation of GB, one has to bestow
some care to the treatment of Boolean constructs (cf. [26], pp.107–109).

To follow [33] orthodoxly, we should treat L× as an autonomous formalism,
on a par with first-order predicate calculus. This, however, would pose us two
problems: we should develop from scratch a theorem-prover for L×, and we
should cope with the infinitely many instances of (S) and of (Repl). Luckily,
this is unnecessary if we treat as first-order variables the meta-variables that

11



P ∪ Q ≡Def P 4 Q 4 P ∩ Q P ⊆ Q ≡Def P ∩ Q = P

P 4 P = Ø

P 4 ( Q 4 P ) = Q
R ∩ Q 4 R ∩P = ( P 4 Q ) ∩ R

P ∩ P = P
1l∩ P = P

( P ?1 Q ) ?1 R = P ?1 ( Q ?1 R )
ι ◦ P = P

P−1−1
= P

( P ?2 Q )−1 = Q−1 ?2 P−1

( P 4 Q ) ◦ R ⊆ Q ◦ R ∪ P ◦ R

From P ◦ Q ∩ R= Ø derive P−1 ◦ R ∩ Q= Ø

From P ⊆ Q derive P ◦ R ⊆ Q ◦ R

Substitution laws for equals (cf. [12])

Either P = Ø or 1l◦ P ◦ 1l= 1l holds

?1 ∈ {4, ∩, ◦} and ?2 ∈ {∩, ◦}

Fig. 1. Logical axioms and inference rules for L×, plus a splitting rule.

occur in the logical axioms or in (S), (Repl) (as well as in induction schemes,
should any enter into play either as additional axioms or as theses to be proved).
Within the framework of first-order logic, the logical axioms lose their status
and become just axioms on relation algebras, conceptually forming a chapter of
axiomatic set theory interesting per se, richer than Boolean algebra and more
fundamental and stable than the rest of the axiomatic system.

Attempts (some of which very challenging) that one might carry out with
any first-order theorem prover have the following flavor:

– Under the axioms (E), (Pow), (T), (S), (Pair)1,2,3,4 , (R), ur=Ø, and (F),
prove (Un), (Repl), (Ch), Fun(F(P ) ), and trans◦ι\1l∈\3=Ø,9 as theo-
rems.

– Under the axioms (E), (Un), (S), (Pair), (R), and (Ur), prove that the
following map equations hold ∈◦( ∈ · · ·∈ )∩ι=ur, nat∩ur=Ø, ord∩ur=Ø,
∈◦ord\ord◦1l=Ø, Ø†6∈41l◦ord◦∈∪1l◦(∈∩( ( 34ι )†6∈ ) )=1l,10 etc.

– Under the axioms (E), (Pow), (Un), (S), (Pair)1,2,3,5 , and (Repl), prove
(Pair)4 as a theorem; moreover, prove Cantor’s theorem, prove the totality

9 The last of these states that the null set belongs to every transitively closed non-null
set.

10 The last two of these state that elements of ordinals are ordinals and that every
non-null set of ordinals has a minimum w.r.t. ∈.
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of F( Ø ), F( ι ), F( 63∈ ), F( 33 ), F( 3∪ι ), F( π0∪π1 ), F( π0◦3∪π1 ), and
of F( funPart( Q )◦3∪setPart( P ) ), where setPart( P ) ≡Def P∩∂(P )◦1l.

We count on the opportunity to soon start a systematic series of experiments
of this nature, for which we are inclined to using Otter. We plan to perform
extensive experimentation with theories of numbers and sets specified in L×, and
we are eager to compare the results of our experiments with the work of others.
Otter is attractive in this respect, because it has been the system underlying
experiments of the kind we have in mind, as reported in [26, 27]. Moreover, the
fact that Otter encompasses full first-order logic —and not just an equational
fragment of it— paves the way to combined reasoning tactics which intermix
term rewriting steps with steps that, e.g., perform resolution of 1l ◦ P ◦ 1l=1l
against P=Ø, or (cf. [32, 15]) of P ◦ 1l=1l against 1l◦P=1l.

9 A case-study experiment run on Otter

By way of example, let us consider the problem of showing the equivalence be-
tween two formulations of extensionality, which are F( 3 )= ι and the scheme
Fun(F( P ) ). Our proof assistant is Otter 3.05, run under Linux. Our deductive
apparatus for L× is the one shown in Figure 1, but occasionally we have bet-
ter results with an explicit distributive law for ◦ w.r.t. ∪, and with a suitable
substitute for the cycle law (cf. [11], pp.2–3), as shown in Figure 2.

( P 4 Q ) ◦ R ⊆ Q ◦ R ∪ P ◦ R

From P ⊆ Q derive P ◦ R ⊆ Q ◦ R

From P ◦ Q ∩ R= Ø derive P−1◦ R ∩ Q= Ø

V
( P ∪ Q ) ◦ R = Q ◦ R ∪ P ◦ R

P−1◦ (R ∩ ( P ◦ Q 4 R ) )∩ Q = Ø

Fig. 2. Modifications to the laws of L×, useful in some experiments.

Deriving the equivalence between these two statements from the axioms and
inference rules of Figure 1, appears to be out of reach of the current system;
hence we start with a separate derivation of F( 3 )= ι from Fun(F(P ) ).

As a useful preliminary, Otter is exploited to get ι ⊆ F( 3 ), a fact which
does not depend on the hypothesis Fun(F( P ) ). The main step of the proof is
ι ⊆ Q−1 ◦ Q, whence ι ⊆ Q−1 ◦ Q and ι ⊆ Q−1 ◦ Q∩Q−1 ◦ Q follow. Now it
suffices to recall that F( 3 ) ≡Def 3◦ 6∈∩ 63◦ ∈. Proving ι ⊆ F(3 ) in a single
shot, though feasible, requires one to bootstrap the logical axioms by adding
suitable hypotheses and lemmas concerning algebraic properties of 4, ∩, −1,
and the defined map construct . (An excerpt of these can be found in Figure 3,
together with the definition of in term of 4 we adopted.) However, each of
the four major steps in the above outline of the proof can be obtained in fully
automatic mode from the axioms of Figure 1.
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P = P41l

P = P P−1 = P
−1

( P4Q )−1 = Q−14P−1 P∩Q = Q 4 P∩Q

ι = ι−1 P◦ι = ι◦P

Fig. 3. Some tiny lemmas useful to speed-up proof discovery in Otter.

To complete the derivation of F( 3 )= ι, it suffices to instantiate P as 3
in the hypothesis Fun(F( P ) ), and to observe that, taken together, Fun(Q ),
R ⊆ Q, and Total(R ) yield R=Q—in particular, with the instantiation Q ≡
F( 3 ) and R ≡ ι, one gets the desired conclusion. The implication Fun(Q ) ∧
R ⊆ Q ∧ Total(R ) → R=Q is rather difficult for Otter to prove, unless with
the replacements shown in Figure 2.

We are left with the task of deriving Fun(F( P ) ) from F( 3 )= ι. The main
step here is the law R ◦ Q◦ Q−1 ⊆ R (which Otter is able to prove in automatic
mode), whence R ◦ Q◦ Q−1 ◦ Q ⊆ R ◦ Q (i.e., R ◦ Q◦ Q−1 ◦ Q∩R ◦ Q = Ø)
and Q−1 ◦ R−1 ◦ R ◦ Q∩ ⊆ Q−1 ◦ Q (i.e., Q−1 ◦ R−1 ◦ R ◦ Q∩Q−1 ◦ Q = Ø,
by cycle law) follow. The latter specializes both into 63 ◦ P−1 ◦ P ◦ ∈ ⊆ 63◦ ∈
and into 3◦ P−1 ◦ P ◦ 6∈ ⊆ 3◦ 6∈. On another side, F( P )−1 ◦ F(P ) ⊆
63◦ P−1 ◦ P ◦ ∈ and F( P )−1 ◦ F( P ) ⊆ 3◦ P−1 ◦ P ◦ 6∈ both hold (the de-
rived law P ⊆ Q → R ◦ P ⊆ R ◦ Q intervenes crucially here), and hence we
obtain F( P )−1 ◦ F(P ) ⊆ F( 3 ) = ι, which leads to the desired conclusion.

The time-consumption in similar experiments can be significantly reduced by
exploiting collections of useful tiny lemmas (regarding , ∪, etc.).

10 Conclusions

The language L× may look distasteful to reading, but it ought to be clear that
techniques for moving back and forth between first-order logic and map logic
exist and are partly implemented (cf. [33, 13, 5, 9]); moreover they can be ame-
liorated, and can easily be extended to meet the specific needs of set theories.
Thanks to these, the automatic crunching of set axioms of the kind discussed in
this paper can be hidden inside the back-end of an automated reasoner.

Anyhow, we think that it is worthwhile to riddle through experiments our ex-
pectation that a basic machine reasoning layer designed for L× may significantly
raise the degree of automatizability of set-theoretic proofs. This expectation re-
lies on the merely equational character of L× and on the good properties of
the map constructs; moreover, when the calculus of L× gets emulated by means
of first-order predicate calculus, we see an advantage in the finiteness of the
axiomatization of ZF.
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